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ABSTRACT

Mittet, R. and Arntsen, B., 2000. General source and receiver positions in coarse-grid finite-
difference schemes. Journal of Seismic Exploration, 9: 73-92.

v Coarse grid finite-difference schemes do not allow for general source and receiver positions.
This problem is here solved with optimized operators with general phase-shift properties. These
operators are bandlimited representations of the Dirac delta function and the derivative of the Dirac
delta function. The scheme is tested for a single source and a source array. The resulting
finite-difference solutions are for both cases close to the analytical solution.

KEY WORDS: modeling, finite-difference, staggered-grid, marine source array,
phase-shift interpolation, coarse-grid.

INTRODUCTION

Coarse-grid methods like pseudo-spectral methods (Fornberg, 1975;
Kosloff and Baysal, 1982) or high-order finite-difference methods (Holberg,
1987) are ideally suited for implementing fast and memory efficient 3-D elastic
modeling schemes (Mittet et al., 1988; Reshef et al., 1988). These methods
require few nodes per shortest wavelength in order to describe a propagating
wavefield, thus both storage requirements and the number of numerical
calculations are reduced as compared to low order finite-difference schemes.
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However, there are problems implementing the source function when the
typical distance between adjacent grid points is of the order of 10 m. Even a
single airgun can not be correctly implemented, unless the true source depth
coincide with a grid node. Assuming a grid spacing of 10 m, then the source
must be placed at the depth of 10 m since there are no nodes between the free
surface and this depth. If the true depth of the source is 4 m, then the ghost
contribution cannot be properly described using a coarse grid. The problem is
even larger if a marine source array is to be simulated. A conventional marine
source array consists of a number (from 5 to 70) of individual air guns,
typically separated by 1 - 4 m. This implies that effective point-source
signatures estimated from measurements cannot be implemented directly in a
coarse-grid finite-difference scheme. This problem was solved in Landre et al.
(1993) by using an inversion scheme prior to the finite-difference modeling,
generating effective sources at chosen node positions. In this paper we present
a method which obviates this inversion based preprocessing of the source
contribution and include the source contribution directly at the true depth,
independently of the grid spacing. The new scheme also allows for arbitrary
receiver positions. The method is based on generating optimized bandlimited
approximations to the Dirac delta function and its first derivative, where these
bandlimited functions are designed with a general phase shift. The resulting
operators represent a generalization of the operators given by Holberg (1987).

Ziolkowski et al. (1982) presented a method for determining the source
wavefield from near-field measurements of the signature of each gun in a marine
source array. Landre and Sollie (1992) and Amundsen (1993) have given
alternative methods for determining effective sources. By using the proposed
optimized bandlimited delta-function operators these effective source
contributions can be included directly at an arbitrary position in a coarse grid
finite-difference scheme.

Other applications of these operators are in reverse time migration where
a spatially non-regularly sampled boundary condition can be included on a
regularly spaced grid and in data recording where output can be performed at
an arbitrary position. The implementation of the elastic Kirchhoff integral for
finite-difference schemes is discussed in Mittet (1994). The spatial part of the
boundary condition requires a description of the monopole operator (Dirac delta
function) and the dipole operator (derivative of Dirac delta function). Zhu and
Lines (1997) point out that the seismic wavefield has a capability of "healing
itself" during retropropagation and due to this, interpolation as a preprocessing
step to the reverse time migration may be avoided. For spatially non-regularly
sampled data, the contributions to the boundary condition should be introduced
at the true positions, not at the nearest node positions of the finite-difference
orid. This is nossible with the nronnsed ontimized nhace-chifted aneratare Tha
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required wavenumber limits, then the response at any location can be calculated
using the optimized convolutional interpolation operator. Simulating a real
experiment, group summation can be performed during modeling and in addition
a streamer with variable depth and feathering may be simulated.

Introducing the source at an undesired depth causes both a distortion of
the waveform and an erroneous radiation pattern. The error in source amplitude
as a function of radiation angle is frequency dependent and can be fairly large.
We discuss this after the theory section. We also give results for a realistic
source array where the effective source signatures (notional source signatures)
are known. Finally we give an example with a streamer having a variable depth.
The standard procedure of recording at the nearest nodes is compared with the
scheme of recording at the true positions.

THEORY

For simplicity we discuss the implementation of the optimized phase-shift
source and receiver operators using the 3D acoustic wave equation, but the
operators can be implemented directly in a 3D staggered-grid elastic
finite-difference scheme. In the following, the Einstein summation convention
is used. The acoustic wave equation for forward modeling with a source
signature S(t) is,

?P(x,t]x,) — M(x)aj{p‘l(x)ajP(x,t\xs)} = d(x—xy)S(t) , D

where P(x,t]x,) is the pressure due to a source at X;, p(x,t) is the density and
M(x) is the bulk modulus. The pressure field is identically zero before the
source is fired. The acoustic wave equation for retropropagation used in reverse
time migration is,

?P(x,t

x) — M®)d,{p "' (x)3;P(x,t|x.)}
= §’ dAx)o(x,) "' n[(x—x)IP(x,0) + ;6(x—x)Px,D] , )

where n, is a surface normal and the surface integral is implemented as a sum
over receiver positions weighted with the corresponding surface area elements.
If the receiver positions do not coincide with the nodes of the grid, then
bandlimited approximations with general phase-shift properties to the Dirac delta
function and the derivative of the Dirac delta function are required. Equation (2)
is a representation of the well known Kirchhoff integral. The formal final
condition at time t = T is that the pressure field and its spatial derivatives must
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towards t = 0. The normal situation is that the pressure field is not known on
a closed surface, this will introduce aperture effects.

Equation (1) or equation (2) can be solved by the same high-order
finite-difference scheme as shown in Mittet (1994). The discrete derivative
operator is given in equation (A-3). The staggered-grid implementation requires
two special cases of the operator coefficients . These special cases are the
forward derivative operator coefficients «f° and the backward derivative
operator «;%°. Here 7 gives the shift 6x = pAx from a node. With —0.5 < ]
< 0.5 all locations between nodes can be accessed. For a general shift nAx the
operator has an odd number of coefficients, but for » = 0.5and n = —0.5 one
of the coefficients (/ = —L or / = L, respectively) is zero and the operator
coefficients are anti symmetric with respect to the index /. The set of operator
coefficients [o)°] are identical to the set of operator coefficients [a;%°] except
for a shift of one position. As an example, let L = 2, if

[alo,zg] = (09_a2’_a1’a17a2) »
then

[aEQZS] = (_aZ’_al’al’onO) .

With o, the coefficients of [a}-], the forward derivative in the i-direction
can be expressed as (Holberg, 1987)

L
a?qu = (I/Ax) Z 0‘1(¢j+1 = B 1)
=1

and the backward derivative in the i-direction can be expressed as

L
31 = (1/AX) Y o byrrr — b)) -
1=1

With these operators, a staggered-grid high-order modeling scheme can
implemented. Let x = iAx, y = jAy, z = kAz and t = nAt,

_ -1 +PDn

Ai+'/z‘j,k = pi+'/z,j,kaxPi,j,k ,
— -1 +1n

Biitvuk = PienidyPhic 3)
_ -1 +1n

Ci,j,k+‘/z = pi,j,k+‘/zazPi,j,k s

and
Uik = MijidA x>

xr AW aA_m
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then a second-order time integration of the scheme gives
Pl]H—}k = 2P?Jk - P?T}k + Ui,j,k + Vi,j,k + Wi,j,k + DI,J‘KSH N (5)

where D is the spatial part of the source term. This term is a bandlimited
approximation to the 3D Dirac delta function,

S(x—x) = 6(x—x)8(y—y)d(z—z) , (6)

and can be constructed from the coefficients 37 given in appendix B. The capital
index I(i,i,,n,) depends on i,ig,n, so that,

x = iAX , X, = (i + 704X , ‘ 7
and likewise for the capital indices J and K.

This implies that S", the contribution from the temporal source term at
time nAt, is in principle distributed over several nodes in all spatial directions
and such that this three-dimensional bandlimited delta-function approximation
is centered at the true source position X, and not at the nearest node. The
coefficients of Dy ¢ are such that if x, coincides with a node position, then

Dy;x = (1/Ax)(1/Ay)(1/Az) ,
fori = i, j = j, and k = k, and zero otherwise.

For recording purposes a direct 3D generalization of equation (B-3) can
be used,

Pn(xr’Yr’Zr) = BT Bgy BZZ Pi,j,k
L, L, L,
= Z Z TBLBY Pi+lx,j+ly,k+ll : )
L=-L, ,=~L, L,=~L,

The operator half lengths L, are usually of order 10 to ensure high
numerical precision for all phase shifts. The computer time needed to perform
this triple sum is normally small compared to the computer time needed to step
the wavefield forward in time since the number of receivers usually is much less
than the total number of grid nodes and recording is not necessary at each time
step in order to sample the field properly.

The operators for both sources and receivers take the form of 2D tables. Each

vicmn o~ wnnnivare macitian hao naaract nade eanrdinatee for each snatial
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length 2L + 1 for each n-value. The 5-discretization can be made arbitrarily
fine since the table has to be built only once.

The normal situation is that sources are close to the top edge of the grid.
The source operator can be fairly long and may formally reach far above the top
free surface. However, this can be treated consistently. Our assumption is that
there is vacuum outside the grid, and hence, the pressure field is identically zero
here. Starting sound propagation in vacuum is not possible, so numerically we
sum over all operator coefficients inside grid boundaries only, the contribution
from those outside the grid boundaries must be zero.

NUMERICAL EXAMPLE

The first example is for a single source located at a true depth of 4 m.
The recording is performed at a depth of 100 m. The finite-difference node
spacing is 10 m. The P-wave velocity is 1480 m/s and the density is 1.0 g/cm?®.
The results are shown in Figs. 1 and 2. Fig. 2 show a detail of Fig. 1. The
analytical solution is plotted with a green line. The red line is the result of a
finite-difference simulation where the source is assumed to be located at the
nearest node. The optimized spatial delta functions are not used in this
simulation. Thus, in the finite-difference simulation the source depth becomes
10 m. As can be seen, the two signals deviate. Part of this deviation is due to
the travel-time difference of the direct signal and some of the difference is due
to a different ghost effect for the finite-difference solution compared to the true
solution. In effect the finite-difference signature is stretched compared to the
true solution. The blue line is the result of a finite-difference simulation where
the source is placed at the true depth using the optimized spatial delta functions.
The fit is clearly improved compared to the simple source implementation
approach using the nearest node.

There will also be an error in radiation pattern or amplitude versus
radiation angle if the applied source depth do not coincide with the true source
depth. This error is frequency dependent. In Fig. 3 the angle-dependent
maximum amplitudes of the pressure field due to a source at depth 4 m are
calculated analytically. These amplitudes are compared to the corresponding
finite-difference calculated amplitudes. The finite-difference data is generated
using the nearest node strategy, thus with an effective source depth of 10 m.
The maximum amplitudes are normalized for the direct downgoing wave, which
ensures that the amplitude error will zero when the radiation angle is zero. As
can be seen, the errors increase with radiation angle and source frequency. We
did similar calculations where we compared analvticallv calculated maximum
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Receiver 01

Fig. 1. Pressure at depth 100 m. Zero offset. Green line: analytical solution for source at 4 m. Blue
line: finite-difference solution using phase-shift operators. Red line: finite-difference solution without _

phase-shift operators.
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as in Fig. 3. This difference in radiation pattern is to be expected since the
radiation pattern of a dipole depend on the distance between the "charges" and
the "charge"-separation becomes more important with increased resolution
(higher frequency). In Fig. 4 we compare the analytically calculated maximum
amplitudes for a source at depth 4 m with finite-difference calculated maximum
amplitudes using the operator strategy. As can be seen, the errors are drastically
reduced and usually less than 1 percent.
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We have also performed a calculation for a realistic marine source array.
The notional source signatures were generated with the Nucleus Marine Source
Modeling module from PGS Seres. The 3090T array is shown in Fig. 5. All
guns are at a depth of 5 m. The 3090T array contain 28 active guns. The
corresponding notional source signatures are shown in Fig. 6.
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Receiver 01

Fig. 7. Farfield signatures. Zero offset. Green line: analytical solution. Blue line: finite-difference
solution using phase-shift operators. Red line: finite-difference solution without phase-shift operators.
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Fig. 8 shows a detail of Fig. 7 and both show farfield signatures
calculated analytically and with finite differences. The analytical solution is
plotted with a green line. The red line is the result of a finite-difference
simulation where the optimized spatial delta functions are not used. This implies
that all sources are located at the nearest node in the finite-difference simulation.
Thus sources are in principle at erroneous positions in x-, y- and z-directions.
Deviations can be seen in the arrival time and amplitude of the primary part of
the signal and also to some extent for the more low frequent part related to the
bubble oscillations. The blue line represent the result of a finite-difference
simulation where the sources are placed at their true x-, y- and z-coordinates
using the optimized spatial delta functions. The fit is clearly improved compared
to the strategy of using the nearest nodes as the source positions.

The operators can also be used to allow for arbitrary receiver positions.
Two acoustic 3D finite-difference shotgathers are modeled. The streamer is
assumed to have a varying depth. The average depth is 10 m and the maximum
deviations are + 2 m. The deviations have a sinusoidal form with a wavelength
of 500 m. The streamer length is 1000 m with nearest offset equal to 100 m. A
cross section of the P-wave velocity model is shown in Fig. 9 and the resulting
shotgather is shown in Fig. 10. The shotgather resulting from moving the
recording positions to the nearest node in the finite-difference grid is shown in
Fig. 11. The difference between the two shotgathers is shown in Fig. 12. All
three shotgathers are scaled with time squared to compensate for the geometrical
spreading effect and the overall scaling factor is identical for the three datasets.
The sinusoidal depth variations of the streamer are clearly mirrored in the
difference shotgather.
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Fig. 10. Shotgather for receivers at true positions.

CONCLUSION

- |

o

R

A method for positioning sources and receivers at arbitrary locations for
coarse-grid finite-difference schemes has been presented. The method is based
on designing optimized bandlimited approximations for both the Dirac delta
function and the spatial derivative of the Dirac delta function. These operators
can have a general phase shift which allows the operator to be centered
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Fig. 11. Shotgather for receivers at nearest node in finite-difference grid.

function (monopole) used in the source term or Kirchhoff integral. The
phase-shift derivative operator is identical to the spatially bandlimited derivative
of the delta function (dipole) used in the source term or Kirchhoff integral. The
acoustic and elastic Kirchhoff integral requires that proper approximations for
the monopole and dipole source terms are known. Thus, these operators can
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Fig. 12. Difference between shotgathers. Shotgather with receivers at true

with receivers at nearest nodes.

The optimized phase-shift operators were tested both for a single source

source array. Good agreement between the finite-difference solution and

the analytical solution were found in both cases. Most important is that the error

in amplitude versus radiation angle is drastically reduced usi

operator scheme.

and a

ng the optimized

given.

A demonstration of the effect of variable streamer depths was also
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perators where designed with a group velocity error criterion a
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APPENDIX A
Dipole and derivative operator

The dipole operator needed in the source term of the wave equation or in
the implementation of the boundary condition is the derivative of the Dirac delta

function

3,0(x — X)) . (A-1)
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Bup(x + 80 = | dX{—0(x' ~ exJbkx + x) = & * $(x) . (A2)

Assume that this operator can be bandlimited and is to be used on a
regularly sampled function with sampling interval Ax. Let x = iAx with i
integer. Let 6x = nAx with 9 a real number such that —0.5 < < 0.5. The
two special cases n = —0.5 and 7 = 0.5 will be the forward and backward
derivative operators given by Holberg (1987). The discretized version of d2* is
denoted D7 and the bandlimited Dirac delta function is denoted §,

8,6(AX + nAx) = DI(jAx)

L
= L ax-050Ax — navlg(iax + 1A%
L

Y, Qb - (A-3)

I=-L

The Fourier response of DY is,

L
D'(k) = (1/Ax) Y, et (A-4)

I=-L
Let the response D"(k) be represented by

D"(k) = ik[l + (k)] , (A-5)

where €"(k) is the relative error in frequency response of the operator DI. The
derivative of the frequency response of D"(k) is

aD"k) = i[1 + e'(k) + kae"(k)] . (A-6)
If it is required that D*(k) should be as close to ik as possible then,
min[D7(k) — ik] = min[e"(k)] . (A-7)

If it is required that the derivative of D"(k) with respect to k should be as
close to i as possible then,

min[(1/1))d,D"(k) — 1] = min[e"(k) + kd,e"(k)] , (A-8)
which will make the operator response D?(k) close to ik and close to equiripple

simultaneously. This error criterion is identical to the group-velocity criterion
intrandured hv Halhero (19R7)
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The chosen procedure is to minimize the error functional €7,

K, L
€ = § dk{(1/1)aD"(k) — 1}" + w( Z oDl? {A-10)
k=0 [=-L
where
L
(1MHaDI(k) = Y, o)l — me*i-mar (A-11)
[=-L
The term proportional to the weight w in equation (A-10) ensures that the
sum of all derivative operator coefficients is zero. This constraint must be
implemented to give operators, which when applied to constant functions give
a derivative of zero as result, independently of the phase shift. The best w value
was found to be typically 5 X 1073 and the best value of n was found to be 4.
An additional constraint is that the relative group velocity error e (k) is less than
the tolerance E, for all wavenumbers up to the maximum wavenumber K. The
coefficients o] are the variables in this standard least square problem. A solution
is accepted when K, can not be increased further with the given E,. The value
of E,, is of order 1072 - 10~°. For the numerical examples in this paper the
maximum error in group velocity is 0.001.

APPENDIX B

Monopole and interpolation operator

" The monopole operator needed in the source term of the wave equation
or in the implementation of the boundary condition is the Dirac delta function,

S(x — X)) . (B-1)

The Dirac delta function also defines the convolutional interpolation
operator b2*,

o(x + 6%) = | dx'{8(x' — 8x)}d(x + X) = b * $(x) . (B2)

Assume that this operator can be bandlimited and is to be used on a
regularly sampled function with sampling interval Ax. Let x = iAx with i
integer. Let 6x = nAx with 5 real number such that —0.5 < 5 < 0.5. The
discretized version of b®* is denoted B,
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L

= Y Ax[5(Ax — nAX)]$(AX + IAX)

!=—L

L
L B (B-3)

The Fourier response of B! is

L
Bik) = ), By ekt max (B-4)

I=—L

Let the response of B"(k) be represented by
B'k) =1 + ek) , (B-5)

where €"(k) is the relative error in frequency response of the operator BY. The
derivative of the frequency response of B"(k) is

9, B"(k) = 9, €"(k) . (B-6)

The group velocity criterion can be used for the interpolation operator as
for the derivative operator discussed in Appendix A. If it is required that B"(k)
is as close as possible to 1 and that the derivative of B"(k) with respect to k is
as close to O as possible then,

min[B"(k) — 1 + kd,B"(k)] = min[e"(k) + kdye"(k)] = min[e] (k)] , B-7)

which will make the operator response B'(k) close to equiripple.

The error functional €] is then,

K, L
€ = jk S)k{B"(k) — 1+ k3B + w( Y, Bl — D2, (B-8)

I=—L

where
L
B"(k) — 1 + ko, B"(k) = E {BI1 + ik(i—n)Ax]e“‘(""m} -1 . (B9
{=—L

The term proportional to w in equation (B-8) ensures that the sum of all
interpolation operator coefficients is equal to 1. This constraint must be
implemented to give operators, which when applied to a constant function give
the constant function as result independently of phase shift. The optimized
coefficients 3] are found with the same least square procedure as the optimized
o) coefficients discussed in Appendix A.



